On game chromatic number analogues of Mycielsians and Brooks' Theorem
Abstract
Keywords
Full Text:
PDFReferences
Bartnicki, T., Bresar, B., Grytczuk, J., Kovse, M., Miechowicz, Z., and Peterin, I. (2008). Game chromatic number of cartesian product graphs. Elec. J. Comb., 15:R72.
Bartnicki, T., Grytczuk, J., Kierstead, H., and Zhu, X. (2007). The map-coloring game. Am. Math. Monthly, 114:793–803.
Destacamento, C., Rodriguez, A., and Aquino-Ruivivar, L. (2014). The game chromatic number of some classes of graphs. https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-
congress-proceedings/2014/TPHS/TPHS-I-011-FT.pdf.
Dinski, T. and Zhu, X. (1999). A bound for the game chromatic number of graphs. Disc. Math., 196(1-3):109–115.
Dunn, C., Larsen, V., Lindke, K., Retter, T., and Toci, D. (2015). The game chromatic number of trees and forests. Discrete Math. and Th. Comp. Sc., 17(2):31–48.
Faigle, U., Kern, U., Kierstead, H. A., and Trotter, W. T. (1993). On the game chromatic number of some classes of graphs. Ars Combin., 35:143–150.
Frieze, A., Haber, S., and Lavrov, M. (2013). On the game chromatic number of sparse random graphs. SIAM J. Discrete Math., 27(2):768–790.
Gardner, M. (1981). Mathematical games. Scientific American, 23.
Guan, D. and Zhu, X. (1999). Game chromatic number of outerplanar graphs. J. Graph Th., 30(1):67–70.
Kierstead, H. A. and Trotter, W. T. (1994). Planar graph coloring with an uncooperative partner. J. of Graph Th. , 18(6):564–584.
Raspaud, A. and Wu, J. (2009). Game chromatic number of toroidal grids. Info. Processing Letters, 109(21-22):1183–1186.
Zhu, X. (1999). The game coloring number of planar graphs.
J. Combin. Theory Ser. B, 75:245–258.