Geometry of a Family of Quartic Polynomials
Abstract
For a fixed $\mathcal{A} \in \mathbb{C}$ with $|\mathcal{A}|=1$, this paper characterizes critical points of polynomials of the form $p(z)=(z-1)(z-\mathcal{A})(z-r_1)(z-r_2)$ with $|r_1|=|r_2|=1$.
Keywords
Full Text:
PDFReferences
@ARTICLE{GOCP,
AUTHOR = {C. Frayer, and M. Kwon, and C. Shafhauser, and J.A. Swenson},
TITLE = {The Geometry of Cubic Polynomials},
YEAR = {2014},
JOURNAL = {Math. Magazine},
VOLUME = {87},
NUMBER = {2},
PAGES = {113--124}
}
@article{GOCP2,
author={Frayer, Christopher},
title={Geometry of Polynomials with Three Roots},
journal={Missouri Journal of Mathematical Sciences},
volume={29},
year={2017},
number={2},
pages={161--175},
}
@article{GOCP3,
author={C. Frayer, and L. Gauthier},
title={A Tale of Two Circles: Geometry of a Class of Quartic Polynomials},
journal={Involve},
volume={11},
year={2018},
number={3},
pages={489--500},
}
@article{GOCP4,
author={C. Frayer, and P. Thomson},
title={Geometry of a Family of Quartic Polynomials},
journal={Pi Mu Epsilon Math Journal},
volume={Fall},
year={2020},
number={},
pages={},
}
@book{GMT,
author={Hitchman, Michael},
title={Geometry with an Introduction to Cosmic Topology},
publisher={This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License},
place={https://mphitchman.com/geometry/gct-toc.html},
year={2018},
}
@article{CoA,
author={Partenskii, M},
title={The Circle of Apollonius and Its Applications in Introductory Physics},
journal={The Physics Teacher},
volume={46},
year={2008},
pages={104--108},
}